Rel(G)=F0pm(1−p)0+F1pm-1(1−p)1+F2pm-2(1−p)2+…+Fmp0(1−p)m
            = pm-(d+1)(h0(1−p)0+h1(1−p)1+…+hd+1(1−p)d+1)

ただし、i>d+1においてFi=0で、また、
F0xd+1+F1xd+…Fd+1x0= h0(x+1)d+1+h1(x+1)d+…+hd+1(x+1)0.

(証明)

Rel(G)=F0pm(1−p)0+F1pm-1(1−p)1+F2pm-2(1−p)2+…+Fmp0(1−p)m
            = F0pm(1−p)0+F1pm-1(1−p)1+F2pm-2(1−p)2+…+Fd+1pm-(d+1)(1−p)d+1
            = pm-(d+1)( F0pd+1(1−p)0+F1pd(1−p)1+F2pd-1(1−p)2+…+Fd+1p0(1−p)d+1)
            = pm-(d+1)(1−p)d+1( F0(p/(1−p))d+1+F1(p/(1−p))d+F2(p/(1−p))d-1+…+Fd+1(p/(1−p))0)
            = pm-(d+1)(1−p)d+1( h0(p/(1−p)+1)d+1+h1(p/(1−p)+1)d+h2(p/(1−p)+1)d-1+…+hd+1(p/(1−p)+1)0)
            = pm-(d+1)(1−p)d+1( h0(1/(1−p))d+1+h1(1/(1−p))d+h2(1/(1−p))d-1+…+hd+1(1/(1−p))0)
            = pm-(d+1)( h0(1−p)0+h1(1−p)1+h2(1−p)2+…+hd+1(1−p)d+1)


戻る